FUNCTIONS ON κ-NET CONVERGENCE STRUCTURES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D-completions of net convergence structures

By extending Ershov’s notion of a d-space from topological spaces to net convergence spaces, this paper details the d-completion of certain net convergence structures which are rich enough to support it. In particular, it is demonstrated that spaces which are embeddable into d-spaces which have iterated limits admit d-completions. The main result reported herein generalizes an existing procedur...

متن کامل

On The Mean Convergence of Biharmonic Functions

Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...

متن کامل

NET-THEORETICAL L-GENERALIZED CONVERGENCE SPACES

In this paper, the denition of net-theoretical L-generalized convergencespaces is proposed. It is shown that, for L a frame, the category ofenriched L-fuzzy topological spaces can be embedded in that of L-generalizedconvergence spaces as a reective subcategory and the latter is a cartesianclosedtopological category.

متن کامل

Further study on $L$-fuzzy Q-convergence structures

In this paper, we discuss the equivalent conditions of pretopological and topological $L$-fuzzy Q-convergence structures and define $T_{0},~T_{1},~T_{2}$-separation axioms in $L$-fuzzy Q-convergence space. {Furthermore, $L$-ordered Q-convergence structure is introduced and its relation with $L$-fuzzy Q-convergence structure is studied in a categorical sense}.

متن کامل

on the mean convergence of biharmonic functions

let denote the unit circle in the complex plane. given a function , one uses t usual (harmonic) poisson kernel for the unit disk to define the poisson integral of , namely . here we consider the biharmonic poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . we then consider the dilations for and . the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Honam Mathematical Journal

سال: 2014

ISSN: 1225-293X

DOI: 10.5831/hmj.2014.36.3.669